Значение, особенности и строение бактерий

Но среди них есть организмы, похожие на вероятных предков многоклеточных животных  и ближайшие их родственники — представители класса воротничковых жгутиконосцев. Во всяком случае, строение их клеток удивительно похоже на строение воротничковых клеток губок. Они же, вероятно, были предками и настоящих грибов. Мы рассмотрим эту группу организмов и потому, что на их примере хорошо видны эволюционные изменения организации тел, продолжающихся и у животных.

Внешнее строение

Клетка бактерии одета особой плотной оболочкой – клеточной стенкой, которая выполняет защитную и опорную функции, а также придаёт бактерии постоянную, характерную для неё форму. Клеточная стенка бактерии напоминает оболочку растительной клетки. Она проницаема: через неё питательные вещества свободно проходят в клетку, а продукты обмена веществ выходят в окружающую среду. Часто поверх клеточной стенки у бактерий вырабатывается дополнительный защитный слой слизи – капсула. Толщина капсулы может во много раз превышать диаметр самой клетки, но может быть и очень небольшой. Капсула – не обязательная часть клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она предохраняет бактерию от высыхания.

Внешнее строение

На поверхности некоторых бактерий имеются длинные жгутики (один, два или много) или короткие тонкие ворсинки. Длина жгутиков может во много раз превышать разметы тела бактерии. С помощью жгутиков и ворсинок бактерии передвигаются.

Как выглядят бактерии

Внешний вид и параметры клетки влияют на ее свойства – подвижность, функциональные особенности, крепление к поверхности. По форме микроорганизмы разделяются на:

1. Кокки – шаровидные или округлые бактерии. Они различаются по количеству клеток в сцепке:

  • микрококки (единичная клетка);
  • диплококки (две клетки, соединенные между собой);
  • тетракокки (четыре соединенные клетки);
  • стрептококки (соединенные в длину в виде цепи);
  • сарцины (пласты или пакеты из 8, 12, 16 и более штук);
  • стафилококки (соединение имеет форму виноградной грозди).

2. Палочки различают:

  • по форме концов: плоские (обрубленные), округлые (полусфера), острые (конус), утолщенные;
  • по характеру соединения: одиночные, пары, цепочки (стрептобактерии).
Как выглядят бактерии

3. Спирали имеют изогнутую или спиральную форму (строго говоря, эти бактерии тоже относят к палочковидным). Они выделяются формой и количеством завитков:

  • вибрионы – немного выгнутые;
  • спириллы – один или несколько витков (до четырех);
  • свыше четырех завитков имеют борелли (от 4 до 12) и (любимое ругательство доктора Быкова, возбудители сифилиса) трепонемы (от 14 до 17 мелких витков);
  • лептоспиры похожи на латинскую «S».
Читайте также:  Глисты в рыбе фото и описание, можно ли есть такую рыбу

Кроме этого, существуют звездочки, кубики, С-образные и другие формы клеток. Более того, один и тот же вид бактерий в зависимости от обстоятельств может менять форму, причем значительно.

Например, молочнокислые бактерии представляют собой палочки, но одни представители вида могут иметь форму очень короткой палочки (почти шара), тогда как другие вытягиваются в длину, приближаясь к нитевидным клеткам. Длина в данном случае зависит от состава среды, наличия и процентного содержания кислорода, способа культивирования (искусственного выращивания) микроорганизмов.

С размерами одноклеточных немного проще:

  • самые маленькие (бруцеллы);
  • средние (бактероид, кишечная палочка);
  • большие (бациллы, клостридии).

Эндоплазматическая сеть. Аппарат Гольджи. Лизосомы. Клеточные включения

ЭПС – мембранное образование, которое по внешнему виду напоминает лабиринт, пронизывающий примерно половину пространства клетки. Эндоплазматическая сеть состоит из мембраны, эта сеть оплетает ядро и располагается дальше в цитоплазме, однако ретикулум замкнут из выходов в саму цитозоль не имеет.

Эндоплазматическая сеть есть двух видов: гладкая и шероховатая, она же гранулярная. На поверхностях ЭПС идет синтез двух вещей: белки и углеводы с липидами на пару. На поверхности шероховатой ЭПС синтезируются белки. Как было описано ранее, этим занимаются рибосомы, которых здесь множество. А на гладкой ЭПС – углеводы и липиды.

Для того чтобы не путать попробуйте придумать ассоциации. Мне помогает вот что: липиды и углеводы – источники энергии в клетке и организме в целом. Мы их потребляем в пищу, они проходят по множеству трубок: пищевод, толстый и тонкий кишечник.

Естественно, эти структуры не абсолютно гладкие, у тонкого кишечника внутренняя поверхность выстлана ресничками, а у толстого есть гаустры, но сама ассоциации трубки, источников энергии (углеводов и липидов) и гладкости помогают мне запомнить. Шероховатая ЭПС ассоциируется у меня с наждачной бумагой, на которой задерживаются частицы чего-либо.

Такая бумага, в моем восприятии, усеяна множеством шариков, которые и являются рибосомами, синтезирующими белки.

Конечно, клетка, специализирующаяся на синтезе белков будет иметь преимущественно гранулярную ЭПС, а клетка, синтезирующая углеводы и липиды, будет хорошо развитую гладкую ЭПС.

После синтеза необходимых соединений на мембранах ретикулума, вещества должны попасть к местам своего использования клеткой. Не случайно ЭПС имеет такую лабиринтообразную структуру.

Это как метро: с мембран = станций метро соединения = пассажиры заходят в вагоны=трубочки ЭПС и отправляются тука, куда им нужно.

Люди – по делам, а липиды, углеводы и белки – на биохимические реакции или для сохранения как ресурса.

Читайте также:  Виды глистов у человека: пути заражения, фото с описанием

Строение и расположение в клетке эндоплазматической сети

Аппарат Гольджи = комплекс Гольджи

Аппарат Гольджи обязан своему открытию и названию итальянскому гистологу Камилло Гольджи. Этот человек первым открыл уникальное окрашивание препаратов нервной ткани, что внесло большой вклад в развитие гистологии и физиологии 19-20 века. Камилло Гольджи в 1906 году получил Нобелевскую премию по физиологии и медицине.

Аппарат Гольджи представляет из себя систему цистерн, предназначенных для хранения веществ клеткой. Это как большая логистическая система. В цистернах аппарата Гольджи соединения могут быть подвержены модификации, упаковке в мембранные пузырьки, а затем транспорту в этих пузырьках в пункты назначения в цитоплазме или отбраковке, то есть выводу за пределы клетки.

Вполне логично разместить такой органоид клетки рядом с ЭПС, ведь ретикулум занимается синтезом, а аппарат Гольджи – транспортом и упаковкой. Так как Эндоплазматическая сеть – структура замкнутая, то для попадания соединений в аппарат Гольджи используются мембранные пузырьки. Они отшнуровываются от ЭПС, а оптом сливаются с комплексом Гольджи.

Эндоплазматическая сеть. Аппарат Гольджи. Лизосомы. Клеточные включения

Так как в аппарат Гольджи поступают липиды, которые здесь же накапливаются, то эта структура занимается и «ремонтом клетки». Внутри комплекса Гольджи собирается участок мембраны, которые заключается в мембранный пузырек, а потом кусочек мембраны замещает поврежденный фрагмент.

Еще аппарат Гольджи производит лизосомы – мембранные пузырьки с ферментами. Речь об этих структурах пойдет дальше.

Строение и расположение аппарата Гольджи

Лизосомы

Лизосомы представляют из себя не просто мембранные пузырьки, они наполнены пищеварительными ферментами, способными расщепить сложные соединения до более простых, подходящих клетке.

При описании клеточной мембраны упоминалось, что она пластична, в связи с этим способная к фаго-, пино — и экзоцитозу. Когда твердая частица захватывается клеткой, то частица обволакивается мембраной, получается фагосома.

Если эта частица вводится в клетку для питания, то фагосома сливается с лизосомой, а ферменты лизосомы расщепляют содержимое пузырька.

До слияния фагосомы и лизосомы ферменты внутри лизосомы неактивны, ведь если бы они находились в активированном состоянии, то они бы переварили и мембрану лизосомы.

Как уже говорилось ранее, лизосомы формируются в аппарате Гольджи.

Роль лизосом в жизни клетки

Клеточные включения

Клеточные включения не являются органоидами, они используются органоидами для процессов жизнедеятельности. Это просто какие-либо частички на периферии клетки, в ее цитоплазме. Часто это зерна гликогена (у животных) и крахмала (у растений), ведь в виде этих соединений запасается энергия. Также клеточные включения могут быть белками и каплями жира.

Читайте также:  Кератит: что это такое, причины, виды, симптомы и лечение

Гликоген в клетках печени Крахмал в клетках картофеля Капли жира в клетках авокадо

Жгутики

У многих бактерий имеются органы движения в виде очень тонких и длинных нитей, называемых жгутиками. В обычных микроскопических препаратах рассмотреть жгутики не удается ввиду их ничтожного размера. Только с помощью специальных методов окраски удается выявить их наличие. С помощью ультрамикроскопа жгутики можно наблюдать и у живых бактерий.

Бактерии, снабженные жгутиками, обладают подвижностью. Одноклеточные микроорганизмы, лишенные жгутиков – неподвижны.

Жгутики представляют собой хлыстовидные структуры, выступающие из бактериальной клеточной стенки и ответственные за подвижность бактерий (т. е. движение). Расположение жгутиков вокруг бактериальной клетки уникально для наблюдаемых видов.

Особенность бактерий также в том, что они имеют неодинаковые количества жгутиков и различаются по характеру расположения жгутиков:

Жгутики
  • монотрихиальные – имеющие один полярный жгутик;
  • лофотрихиалъные – с пучком жгутиков на конце;
  • одиночный жгутик – на каждом из двух противоположных полюсов
  • перитрихиальные – вся поверхность клетки покрыта жгутиками.

Бактериальный жгутик состоит из трех основных компонентов: хлыстовидной нити, двигательного комплекса и соединяющего их крючка. Нить имеет приблизительно 20 нм в диаметре и состоит из нескольких протофиламентов, каждый из которых состоит из тысяч субъединиц жгутиков.

Таково значение, строение и особенности бактерий являющихся самой древней группой одноклеточных микроорганизмов из ныне существующих на Земле.

Жизненный цикл

Большая часть простейших характеризуется сложным жизненным циклом. В нём происходит чередование половой и бесполой стадий. Особенности этих стадий у разных видов простейших сильно различается. Но в общих чертах их можно разделить на две группы:

Жизненный цикл
  • редукционное деление происходит на уровне зиготы. И все остальные жизненные фазы являются гаплоидными;
  • гаметическая редукция. Мейоз наблюдается только при образовании гамет, все остальные фазы жизненного цикла диплоидны (у солнечников, инфузорий, некоторых жгутиконосцев).

У многих, особенно паразитических, протистов в ходе жизненного цикла происходит сложная смена стадий, различающихся не только числом хромосом в ядре, но и формой, и строением клетки. Таких стадий может быть довольно много, и каждая из них предназначена для выполнения определенных функций — обитания вне и внутри клетки организма-хозяина, в одном или другом хозяине, для многократного деления или для расселения.

Жизненный цикл

У возбудителя тропической малярии Plasmodium falciparum жизненный цикл, кроме чередования поколений, включает смену хозяев — человека и комара из рода Anopheles.